试题专页

1题文

从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=(  )
A. B. C. D.

2答案

D

3考点梳理

条件概率的定义:

(1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示.
(2)条件概率公式:称为事件A与B的交(或积).
(3)条件概率的求法:
①利用条件概率公式,分别求出P(A)和P(A∩B),得P(B|A)=
②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)

的性质:

(1)非负性:对任意的A∈Ω,
(2)规范性:P(Ω|B)=1;
(3)可列可加性:如果是两个互斥事件,则

概率和P(AB)的区别与联系:

(1)联系:事件A和B都发生了;
(2)区别:a、中,事件A和B发生有时间差异,A先B后;在P(AB)中,事件A、B同时发生。
b、样本空间不同,在中,样本空间为A,事件P(AB)中,样本空间仍为Ω。 

4发现相似题